
| ①発表番号                                                           | ②セッション                                                                             | ③セッション名                                                                                                                 |                                                |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 2-1                                                             | セッション 2                                                                            | 拡充P第1回公募で選定された超小型衛星ミッションの紹介                                                                                             |                                                |
| ④発表タイトル                                                         |                                                                                    |                                                                                                                         | ⑤発表者所属・氏名                                      |
| 高精度姿勢制御6U衛星による宇宙可                                               | 視光背景放射観測で探る天体形成史                                                                   |                                                                                                                         | 九州工業大学<br>佐野 圭                                 |
| ⑥著者                                                             |                                                                                    | ⑦所属                                                                                                                     | 8代表者メールアドレス                                    |
|                                                                 |                                                                                    | ①九州工業大学、②ISAS/JAXA、③関西学院大学、④東京都市大学、⑤自然科学研究機構アストロバイオロジーセンター、⑥東京大学、⑦東京工業大学、⑧金沢大学、⑨福井大学                                    | ⑨現在の状況:<br>開発決定済                               |
| ⑩概要(200字程度)                                                     |                                                                                    | ①本ミッションの狙い                                                                                                              | ⑫実現のキーとなる要素技術                                  |
| た1Uサイズの高精度姿勢制御系と、独民衛星によって宇宙可視光背景放射の観測                           | 国可視光背景放射の精密観測のために<br>および広視野での観測が要求される。<br>コントローディング事業により開発され<br>自開発する広視野望遠鏡を搭載した6U | これまでの研究で、近赤外線の宇宙背景放射は系外銀河の足し合わせよりも明るく、超過成分が示唆される。本ミッションは、可視光で宇宙背景放射を観測することによって、超過成分の起源が宇宙初期と近傍宇宙のいずれに存在するのかを、解明することを狙う。 | ・姿勢安定性約10秒角/1分間を達成する姿勢系・2Uサイズに収まる広視野光学系とバッフル機構 |
| ③衛星のスペック                                                        |                                                                                    | <b>御開発状況・計画</b>                                                                                                         |                                                |
| ・姿勢系 絶対指向精度約1度かつ指向安定性約10秒角/分(3 σ)<br>・通信系 ダウンリンク時に数Mbpsのデータレート。 |                                                                                    | 2021年7月頃から概念検討を開始している。拡充P第1回公募において衛星開発フェーズで選定されており、2023年中にEMを開発し、2024年11月までにFMを完成する。衛星の打ち上げ後、1年程度継続的に科学観測を実施する。         |                                                |



## (17)ミッションや技術詳細

|可視光から赤外線で観測される宇宙背景放射は、宇宙初期の天体など未知天体からの放射を含むため、天体形成の歴史を解明するために重要な観測 |量である。これまでの天文衛星等の観測により、近赤外線における宇宙背景放射の輝度は通常銀河の足し合わせの数倍に達すること、またその空間 |的なゆらぎは銀河の分布だけでは説明できないことが分かってきた。これらから、宇宙背景放射には未知の天体からの放射が寄与していることが示 |唆されるため、そのような天体の特性を解明する必要がある。次の宇宙背景放射観測ミッションにおいては、観測波長域と観測領域を拡大すること |による多波長スペクトルおよび大角度スケールのゆらぎを観測することが重要である。特に可視光の0.5umより短波長での広域サーベイは科学的に |重要であるとともに、世界的にも例がない。宇宙背景放射は空間的に広がった放射であるため、比較的小型の望遠鏡で観測可能であり、点源観測ほ どの高い指向安定性が要求されないという特性がある。また、可視光観測においては赤外線観測ほど観測装置を冷却する必要がない観点からも、超 |小型衛星の利用が適当である。超小型衛星のサイズは6Uを想定し、3U程度を占めるミッション部には、約10度角の広視野をカバーする望遠鏡光学 |系、迷光除去機構、暗電流が小さく安定な検出器、検出器を約0℃以下に冷却する機構が必要となる。また、バス部の姿勢系には、絶対指向精度約 |1度、指向安定性10秒角/分(3σ)程度が必要となり、観測データのダウンリンクのために数Mbpsのデータレートが必要である。前述の通り、本 ミッションの狙いである"宇宙可視光背景放射の観測"を行うためのサイエンス要求をもとに、我々は3Uサイズの小型望遠鏡の設計・開発を進めて |いる。本衛星は、1軌道あたり~90分の太陽同期軌道を想定し、うち20分間で科学観測を実施する計画である。観測天域を選定する上で、太陽離角 |>90°かつ、地球離角~180°を条件とすることにより、望遠鏡への迷光混入を防止する。本ミッションでは、1日あたり計15回の観測を行い、1観 |測軌道につき4枚の撮像データを取得する。撮像データは、AOCSによる~10秒角/分の指向安定性のもと、1枚につき1分間の露光時間で取得され、 |4波長帯でそれぞれ3°×3°のタイルを構成する。さらに、各画像の異なるタイルが重なるように各々の観測を3°ずつずらして行なうことによ り、1観測軌道あたり3°×3°の観測天域、4観測軌道あたり9°×9°の観測天域のフルカラータイルを取得する。

## ⑱参考文献など(optional)